‘uonenyis 320|peap e Aq pamojjoy[y | X | v]:0

[T1A1a]=1zx I waN | DV]IWY | ZAX [DV]{wY | D'gv | Z'x]
N~ T~ M'Z~ A~ XD~ g~ vy:suonesado jo aduanbag

‘€d pua ‘Zd pua ‘1d pua
‘W Juswelels £ juswelels {7 Juswaies

9 juswalels

¢y Juswe3es ‘v juswele3s X juswsiels
‘g4 ssaood ‘24 ssadoud ‘14 ssa004d

{1 =: aJoydewas : £T9AJISAJ ‘ZTOAJISAS ‘| TOAIDSAU JBA

saiouapuadap 4ejndii)

uoneZIUOIYIUAS spremof

ssouaAlT % A19jes

‘uonenyis 320|peap e Aq pamoj|oy[x | v]:0
[Ag]=JzAX |2V 109V |ZX]!Z~ A~ XD ~ g~ v:suonesado jo aduanbag

‘zd pue ‘14 pus
£ jusweless {7 juswerels

s@ounosaJ [re Aordws -- ! s@o4nosaJ [Te Aordwa -- ‘A

‘v jusualess X juswale3s
‘24 ssav0.d ‘14 ssad0ud

£ =: aJoydewas : ZTOAJISAJ ‘| TOAJDSDU JEA

49P10 9S.19A9. Ul $921N0S9.4 %E.‘\:@mmﬁ

uonezIuoIYIUAS spremoy

SSaudAIT % A194e8

$UOIBZIUOIYDUAS JO SWIOJ 931} 300|-peap A||einjoni)s aiay) oJe 1o *** <1
WY} 9A|0SDI O} MOH =1

;WdY) puly O} MOH =1

sway} 101paid 0} MOH =

(Ay1adoud Ajoyes [ea3uad auo si sD0|peap Jo uonuardid / aduePIoAY)
)oojpeaq

0] ped] Aew uoneziuoydsuAs Jo swioy 3oy
syooipeaq

SsauaAIT %9 A194e8

(suoneoijdde 1oA19s 10 SWAISAS pappaquid / dwil-[eas ul [ed1dAy)
swaysAs awiy-jeay = sanijiqeded aauy 10 ssaudaisuodsal pay1dads

(SuonIpuod ,0zadly, pue ,|yjeap JUd|is, JO SWIO) IdY10 pue)
MOU PassaIPPE G O] &1 SYD0[PLap JO DIUISTY e

POSSaIpPE UDq Sey =1 (SUOISI||0D 8D4N0SAI OU) UOISN|IXD [BNINJ e
:sajdwexy

Ploy sAemye sa0p O 1ey) sueaw O []d1aym
()OO < ((S'1) 595592044 \/ (1) d)
:sanaadoad Ajayeg
SWwd)SAS JuaLINDUOD Ul S)ABIU0D SSBUPIBLI0YD)

Sunisinay

ssouaAIT % A19jes

*(swa)sAs apou-a|3uls ul ssaulIe) UOWWIOD) S} Ul Julod 1d)e| € Je 91N0sal
awes ay) 1oy paljdde yoiym ssadoid 1ayro Aue DO & YO 1INo-)saly ‘ur-ysai4

*(SWW1SAS PAINGLISIP Ul SSAUIIR) UOWIWOD) HIUO UBY) dOwW pajuesd
921n0sal awes ay) pey ssadoid 1ayjo Aue o. TDO e ¥o Bunrem Jeaur]

‘uayjo Ajanunul sysanbau ssadoud e Ji A9 DO = Yo missauarey w:c‘;m .
‘Ajlenunuod sysanbau ssadoud e Ji 4 E) DO < YOO SSaudIe) YeaA e
U@uCNLM 2q ||IM S221N0say NAEO_«N\CNum PIOAE 0} sueaw e va mmu-_‘—_ﬂm
(2n1) Ae}s uayy [[Im pue) pjoy Aj/enusas s20p O ey sueaw O dIdYM
(SN0 & ((S°1) $9559204d \/ (1) d)
:sa14adoad ssauanr]
Ssou.ie{

SSOUIAIT

SSauaAIT % A194e8

jooud 03 piey A19A 8w0d9q ued saniadoid ssauanyy Sunsaieiu| e

‘(SSauley) 19AD10) pake[ap 8q 0} sI wd)sAs ay) Jo Jied ON e
‘A|[lenjuana paAe|dsip aq 0} spaau walsAs ay) Jo d1e)s 9y e
‘AlJenjuaaa 919|dwod 03 paau sysanbay e

:sojdwexy

(anuy Aeys uayy |1m pue) pjoy Ajjeniuane saop O ey sueaw O dIdYM
(SHOC < ((S°1) 59559004d \/ (1) d)
:sanaadoad ssauanr]

SWwIvYSAS Jua.LuINdU0D Ul S)A22U0D SSaUIIBLIOD)

uonnaday

SsauaAIT %9 A194eS

WR)SAS JUBLINDUOD DY) JO BILIS JUBLIND DY) S| § pue
(9n43 AB}S UBYY ||IM PUB) PloY A//ENIusAs SE0pP O ey} SuBdW D> dIdYM

(S NOC < ((S°1) s9559201d \/ (1) d)
:saniadoad ssauanry
PIoyY sAemje so0p O 1ey) sueaw O []219ym
(S'NOO « ((S°1) s9559201d \/ (1) d)
:sanaadoad Ajayeg

2IN|ie} © PRISPISUOD USAS 10 PIPUSIUI JOU USYJO S| UOHBUIWID] —
nmC_wum\»m Jua.1inNduU0d Ul SSauUldallod Jo muQGUCOU papualxy

SWd)SAS 1ua4INdUOD Ul S)ABIU0D SSBUIIBLI0YD)

uonnaday

ssouaAlT % A19jes

L00T “2u] ‘suos 3 A3j1M uyof
s1daouo) waysAs Suneiado
8a10 ‘auden x 19194 ‘UIn
-|eD ‘weyeiqy ‘zyeydsiaq|is
[Lo0ZZIRY2SIRqIS]

(2) L"10A €861 (SDOL) swa) 9007 ||BH-921UD1d ‘UORIPS PUOddS
-sAg 1oIndwo) uo suondesuel| SunwweiSouq paynqry
U01123)3p ¥20[PEaP PAINGLISIC -s1Qq pue Jua.LINdU0D) JO s3|dIdULY

eineq ‘seey 3 AopeAe(‘eISIy S Apueyd W ‘lly-uag

[eg6LApuEYyD] [900zuag]

J9)deyd siyy 10y saouaiagey

SsauaAIT % A194e8

AJISIDAIUN [BUOIEN UBI[RASNY BU] - JDWWIZ Y 9MN

SSAUDAIT %9 AJojeg

020 A2Ua.11NdU0D) 9 SHIOMION ‘SWOISAS

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

page 469 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

2020 Uwe R. Zimmer, The Ausiralian National Universiy page 470 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy

Deadlocks

Necessary deadlock conditions:

. Mutual exclusion:
resources cannot be used simultaneously.

. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

page 471 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

©2020 Uwe R. Zimmer, The Ausiralian National University page 472 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Necessary deadlock conditions:

1. Mutual exclusion:
resources cannot be used simultaneously.

2. Hold and wait:

a process applies for a resource, while it is holding another resource (sequential requests).

3. No pre-emption:
resources cannot be pre-empted; only the process itself can release resources.

4. Circular wait: a ring list of processes exists,
where every process waits for release of a resource by the next one.

1 A system may become deadlocked, if all these conditions apply!

©2020 Uwe R. Zimmer, The Ausialian National University page 473 of 758 chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock strategies:

Ignorance & restart

15 Kill or restart unresponsive processes, power-cycle the computer, ...

Deadlock detection & recovery
1= find deadlocked processes and recover the system in a coordinated way

Deadlock avoidance
15 the resulting system state is checked before any resources are actually assigned

Deadlock prevention
155" the system prevents deadlocks by its structure

© 2020 Uwe R. Zimmer, The Ausirallan National Universty ~page 474 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion: Mutual exclusion
Hold and wait

No pre-emption
Circular wait

©2020 Uwe R. Zimmer, The Ausiralian National University page 475 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)
. Break Mutual exclusion: Mutual exclusion

By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

. Break Hold and wait: Circular wait

©2020 Uwe R. Zimmer, The Ausialian National University o 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)
1. Break Mutual exclusion: Mutual exclusion

By replicating critical resources, mutual exclusion becomes un- Hold and wait
necessary (only applicable in very specific cases). No pre-emption

2. Break Hold and wait: Circular wait
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

3. Introduce Pre-emption: :

© 2020 Uwe R. Zimmer, The Ausirallan National Universty 477 of 75 or 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

Mutual exclusion
Hold and wait
No pre-emption
Circular wait

. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:

page 476 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Deadlock prevention
(Remove one of the four necessary deadlock conditions)

1. Break Mutual exclusion:
By replicating critical resources, mutual exclusion becomes un-
necessary (only applicable in very specific cases).

2. Break Hold and wait:
Allocation of all required resources in one request.
Processes can either hold none or all of their required resources.

Mutual exclusion
Hold and wait
No pre-emption
Circular wait

3. Introduce Pre-emption:
Provide the additional infrastructure to allow for pre-emption of resources. Mind that re-
sources cannot be pre-empted, if their states cannot be fully stored and recovered.

4. Break Circular waits:
E.g. order all resources globally and restrict processes to request resources in that order only.

2020 Uwe R. Zimmer, The Ausiralian National Universiy page 479 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

RAG = {V, E}; Resource allocation graphs consist of vertices V and edges E.

V = P UR; Vertices V can be processes P or Resource types R.

with processes P = {P;,...,P,}
and resources types R = {Ry,...R;}

E = E. UE, UE, Edges E can be “claims” E, “requests” E, or “assignments” £,

with claims E. = {P; = Rj...}
requests £, = {P; > Rj,...
and assignments £, = {R; = P;,...}

Note: any resource type R; can have more than one instance of a resource.

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy

requests

~page 480 of 758 (chapier 7: “Safety &

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

©2020 Uwe R. Zimmer, The Ausiralian National University page 481 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= Two process, reverse allocation deadlock:

©2020 Uwe R. Zimmer, The Ausialian National University page 482 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

© 2020 Uwe R. Zimmer, The Ausirallan National Universty

~page 483 of 758 (chapter

Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

= No circular dependency = no deadlock:

©2020 Uwe R. Zimmer, The Ausiralian National University page 484 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Resource Allocation Graphs

(Silberschatz, Galvin & Gagne)

©2020 Uwe R. Zimmer, The Ausialian National University page 485 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

i Two circular dependencies 1= deadlock:

Py Ry = Py Ry~ Py~ Ry~ Py
aswellas: Py > Ry > P3 > Ry = P,

Derived rule:
If some processes are deadlocked then there
are cycles in the resource allocation graph.

© 2020 Uwe R. Zimmer, The Ausirallan National Universty

~page 486 of 758 (chaper 7

Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Edge Chasing

(for the distributed version see Chandy, Misra & Haas)

blocking processes:
w Send a probe to all requested yet unassigned resources con-
taining ids of: [the blocked, the sending, the targeted node].

nodes on probe reception:

1= Propagate the probe to all processes holding the critical
resources or to all requested yet unassigned resources —
while updating the second and third entry in the probe.

a process receiving its own probe:
(blocked-id = targeted-id)

w Circular dependency detected.

page 457 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

> Knowledge of claims:

Claims are potential future requests which have no blocking ef-
fect on the claiming process — while actual requests are blocking.

2020 Uwe R. Zimmer, The Ausiralian National Universiy ~page 438 of 758 (chaper 7

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

1 Assignment of resources such that
circular dependencies are avoided:

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy ~page 489 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Earlier derived rule:

If some processes are deadlocked
then there are cycles in the resource allocation graph.

= Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

i Reverse rule for single instances:
If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

©2020 Uwe R. Zimmer, The Ausiralian National University page 490 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for single instances:

If there are cycles in the resource allocation graph
and there is exactly one instance per resource
then the involved processes are deadlocked.

w Actual deadlock identified

©2020 Uwe R. Zimmer, The Ausialian National University page 491 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:
If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

i Potential deadlock identified

© 2020 Uwe R. Zimmer, The Ausirallan National Universty ~page 492 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

Reverse rule for multiple instances:

If there are cycles in the resource allocation graph
and there are multiple instances per resource
then the involved processes are potentially deadlocked.

> Potential deadlock identified
- yet clearly not an actual deadlock here

©2020 Uwe R. Zimmer, The Ausiralian National University page 493 of 758 (chaper 7

Safety & Liveness

Deadlocks

Resource Allocation Graphs
(Silberschatz, Galvin & Gagne)

How to detect actual deadlocks
in the general case?

(multiple instances per resource)

©2020 Uwe R. Zimmer, The Ausialian National University page 494 of 758 chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Banker’s Algorithm

There are processes P; € {Py,...,P,} and resource types R; € {Ry,...,R .} and data structures:

® Allocated [i, j]
s the number of resources of type j currently allocated to process i.
Free [j]
w the number of currently available resources of type j.
Claimed [i, j]
wr the number of resources of type j required by process i eventually.
Requested [i, jI
= the number of currently requested resources of type j by process i.
Completed [i]
w boolean vector indicating processes which may complete.
* Simulated_Free [j]

= Number of available resources assuming that complete processes deallocate their resources.

© 2020 Uwe R. Zimmer, The Ausirallan National Universty 495 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] < False;

2.While Ji: —Completed [i]
and Vj: Requested [i, j1 < Simulated_Free [j] do:

Vj: Simulated_Free [j] < Simulated_Free [j]+ Allocated [i, jI;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is currently

else all processes i with —Completed [i] are involved in a deadlock!.

©2020 Uwe R. Zimmer, The Ausiral

page 496 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Banker’s Algorithm

1.Simulated_Free < Free; Vi: Completed [i] & False;

2.While Ji: —Completed [i]
and Vj: Claimed [i, j] < Simulated_Free [j] do:

Vj: Simulated_Free [j] < Simulated_Free [j]+ Allocated [i, jI;
Completed [i] < True;

3.1f Vi: Completed [i] then the system is

A system is a system in which future deadlocks can be
avoided assuming the current set of available resources.

2020 Uwe R. Zimmer, The Ausiralian National Universiy 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Banker’s Algorithm

Check potential future system safety by simulating a granted request:
(Deadlock avoidance)

if (Request < Claimed) and (Request < Free) then
Free = Free - Request;

Claimed := Claimed - Request;

Allocated := Allocated + Request;

if (checked by e.g. Banker’s algorithm) then
1 Grant request

1> Restore former system state: (Free, Claimed, Allocated)
end if;
end if;

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy ~page 498 of 753 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Distributed deadlock detection

Observation: Deadlock detection methods like Banker’s Algorithm are too communication
intensive to be commonly applied in full and at high frequency in a distributed system.

w Therefore a distributed version needs to:

w Split the system into nodes of reasonable locality
(keeping most processes close to the resources they require).

1= Organize the nodes in an adequate topology (e.g. a tree).

= Check for deadlock inside nodes
with blocked resource requests and detect/avoid local deadlock immediately.

w Exchange resource status information
between nodes occasionally and detect global deadlocks eventually.

©2020 Uwe R. Zimmer, The Ausiral

page 499 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Deadlock recovery

A deadlock has been detected = now what?

Breaking the circular dependencies can be done by:

w Either pre-empt an assigned resource which is part of the deadlock.
& or stop a process which is part of the deadlock.

Usually neither choice can be implemented ‘gracefully’ and deals only with the symptoms.

Deadlock recovery does not address the reason for the problem!
(i.e. the deadlock situation can re-occur again immediately)

©2020 Uwe R. Zimmer, The Ausialian National University

page 500 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Deadlocks
Deadlock strategies:

Deadlock prevention
System prevents deadlocks by its structure or by full verification

Deadlock avoidance
System state is checked with every resource assignment.

Deadlock detection & recovery
Detect deadlocks and break them in a‘coordinated’ way.

Ignorance & random kill
Kill or restart unresponsive processes, power-cycle the computer, ...

© 2020 Uwe R. Zimmer, The Ausirallan National Universty page 501 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Definitions of atomicity:

An operation is atomic if the processes performingit ...
* (by ‘awareness’) ... are not aware of the existence of any other active
process, and no other active process is aware of the activity of the
processes during the time the processes are performing the atomic operation.

(by communication) ... do not communicate with other
processes while the atomic operation is performed.

(by means of states) ... cannot detect any outside state change and do not
reveal their own state changes until the atomic operation is complete.
Short:
An atomic operation can be considered to be
indivisible and instantaneous.

©2020 Uwe R. Zimmer, The Ausiralian National University a 58 (chapter 7

Safety & Liveness” up to page 513)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

| Atomic Operations |

Indivisible
phases

‘ammitmenl (imeTJ

20 Usve R. Zimmer, The Austraian National Universiy

page 503 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Atomic & idempotent operations

Atomic operations

Important implications:
1. An atomic operation is either performed in full or not at all.

2. A failed atomic operation cannot have any impact on its
surroundings (must keep or re-instantiate the full initial state).

3.1f any part of an atomic operation fails,
then the whole atomic operation is declared failed.

4. All parts of an atomic operations (including already completed parts)
must be prepared to declare failure
until the final global commitment.

© 2020 Uwe R. Zimmer, The Ausirallan National Universty page 504 of 758 (chapter 7: “Safety & Livenes

Safety & Liveness

Atomic & idempotent operations

Idempotent operations

Definition of idempotent operations:

An operation is idempotent if the observable effect of the oper-
ation are identical for the cases of executing the operation:

¢ once,
¢ multiple times,
« infinitely often.

Observations:

¢ Idempotent operations are often atomic, but do not need to be.
* Atomic operations do not need to be idempotent.
¢ Idempotent operations can ease the requirements for synchronization.

ve K. Zimmer, The Austrlian Nati page 505 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

‘Terminology of failure’ or ‘Failing terminology’?

Reliability ::= measure of success
with which a system conforms to its specification.
= low failure rate.

Failure = a deviation of a system from its specification.
Error ::= the system state which leads to a failure.

Fault ::= the reason for an error.

2020 Uwe R. Zimmer, The Ausiralian National Universiy page 506 of 758 (chapter 7: “Safety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

Faults during different phases of design

* Inconsistent or inadequate specifications
w frequent source for disastrous faults

e Software design errors
w frequent source for disastrous faults

e Component & communication system failures
wr rare and mostly predictable

© 2020 Uwe R. Zimmer, The Ausirlian National Universiy ~page 507 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

Faults in the logic domain

* Non-termination / -completion
Systems ‘frozen’ in a deadlock state, blocked for missing input, or in an infinite loop
w Watchdog timers required to handle the failure

* Range violations and other inconsistent states
1 Run-time environment level exception handling required to handle the failure

¢ Value violations and other wrong results
w User-level exception handling required to handle the failure

©2020 Uwe R. Zimmer, The Ausiralian National University page 508 of 758 (chapter 7: *Safety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

Faults in the time domain

¢ Transient faults
wr Single ‘glitches’, interference, ... very hard to handle

¢ Intermittent faults
w Faults of a certain regularity ... require careful analysis

* Permanent faults
w Faults which stay ... the easiest to find

©2020 Uwe R. Zimmer, The Ausialian National University page 509 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

Observable failure modes

- -
| fa |
r { uncontrolled. |
. R
Time domain Value domain
i -

never
late (omission)

fail
controlled

©2020 Uwe R. Zimmer, The Aus ational Univers 510 0f 758 (chapter

Safety & Liveness” up to page 513)

Safety & Liveness

Reliability, failure & tolerance

Fault prevention, avoidance, removal, ...

and/or

1= Fault tolerance

©2020 Uwe R. Zimmer, The Ausiralian National University page 511 of 758 (chapter 7: “Safety & Liveness” up to page 513

Safety & Liveness

Reliability, failure & tolerance

Fault tolerance

o Full fault tolerance

the system continues to operate in the presence of ‘foreseeable’ error conditions,
without any significant loss of functionality or performance
— even though this might reduce the achievable total operation time.

¢ Graceful degradation (fail soft)
the system continues to operate in the presence of ‘foreseeable’ error conditions,
while accepting a partial loss of functionality or performance.

e Fail safe
the system halts and maintains its integrity.

w Full fault tolerance is not maintainable for an infinite operation time!

ww Graceful degradation might have multiple levels of reduced functionality.

©2020 Uwe R. Zimmer, The Ausialian National University page 512 of 758 (chapter 7: “Salety & Liveness” up to page 513)

Safety & Liveness

Summary
Safety & Liveness

e Liveness
* Fairness

e Safety
¢ Deadlock detection
¢ Deadlock avoidance
¢ Deadlock prevention

¢ Atomic & Idempotent operations
¢ Definitions & implications

¢ Failure modes
* Definitions, fault sources and basic fault tolerance

© 2020 Uwe R. Zimmer, The Ausirallan National Universty page 513 of 758 (chapter 7: “Salety & Liveness” up to page 513)

